B2 FAN POWERED TERMINAL UNITS QFV | Standard, Parallel Flow ## QFV Engineering Specification & Configuration = #### **QFV UNIT** Fan powered terminal unit shall be completely factory assembled and wired with motor, blower, mixing plenum, and primary air damper contained in a single unit housing. Unit shall be Krueger model QFV. Primary airflow controller shall compensate for central system pressure fluctuations. When room temperature requires maximum heating, the (direct digital) (analog) (pneumatic) pressure, independent velocity controller shall maintain the minimum primary airflow setting by modulating the damper. The induction fan shall run, and the electric heating coil (hot water coil), if supplied, shall be energized (activated). As room temperature begins to rise, the heating coil shall be de-energized (deactivated). As room temperature calls for maximum cooling, the velocity controller shall maintain the maximum primary airflow setting. Terminals shall be certified by use of the AHRI Standard 880 Certification Program and carry the AHRI seal. The terminal unit shall be ETL listed as a complete assembly. All electrical components shall be UL listed and installed in accordance with the National Electric Code. All electrical components shall be mounted in sheet metal control enclosures. Electrical connections shall be single point. Unit casing shall be constructed of not less than 22 gage galvanized steel. All primary air inlet collars shall accommodate standard flex duct sizes. Unit discharge shall be rectangular, suitable for flanged duct connections. Unit labels shall be adhered to each unit including model, size, airflow (CFM), balancing chart, electrical information, and tagging data. Terminal unit shall be provided with 20 gage galvanized steel backdraft damper. Gravity operated backdraft damper shall not be acceptable. Primary airflow shall prevent backdraft damper from opening. QFV unit shall be equipped with a factory installed airflow sensing device. Provide a K4 LineaCross, four quadrant, multipoint center averaging sensor with an amplified signal. • (Optional) Provide a linear, multi-point, velocity averaging sensor with an amplified signal. Provide balancing taps to allow for easy airflow verification. The primary air damper assembly shall be constructed of heavy gage galvanized steel with solid shaft rotating in self lubricating Delrin® bearings. Damper shaft shall be marked on the end to indicate damper position. Damper blade shall incorporate a flexible gasket for tight airflow shutoff and operate over a full 90 degree rotation. Fan motor and all interior components must be accessible through a removable bottom access panel. Fan shall be of the forward curve, centrifugal type. The fan motor shall be [120, 208/240, 277 volt, multi-voltage, single- phase, single-speed, 60 cycle] energy efficient design, permanently lubricated, using permanent split capacitor for starting and be specifically designed for use with an SCR fan speed controller. Motor must have thermal overload protection. The fan motor shaft shall be connected directly to the fan and the fan motor shall be isolated from the unit casing to prevent transmission of vibration. The radiated and discharge attenuation factors for the specified NC levels shall be based on either room absorption, plus an environmental adjustment factor or the attenuation factors from AHRI Standard 885-08 Appendix E, which includes room absorption, environmental adjustment factor, duct insertion, end reflection and duct branching. #### **CASING LINERS** Unit casing shall be lined with 1/2" thick, 1 1/2 lb. dual density fiberglass insulation that meets UL 181 and NFPA 90A. Insulation shall be attached to the unit casing by adhesive and weld pins. - (Optional) 1" Thick Insulation: Unit casing shall be lined with 1" thick, 1 1/2 lb. dual density fiberglass insulation that meets UL 181 and NFPA 90A. Insulation shall be attached to the unit casing by adhesive and weld pins. - (Optional) Cellular Insulation: Unit casing shall be lined with 1/2" or 1" thick, 1 1/2 lb. density, smooth surface, polyolefin, closed-cell foam insulation for fiber free application. Cellular insulation meets UL 181 and NFPA 90A and does not support mold or bacteria growth. Insulation shall be attached to the unit casing by adhesive and weld pins. - (Optional) Foil Encapsulated Insulation: Unit casing shall be lined with foil reinforced, wrapped edges, 1/2" or 1" thick, 1 1/2 lb. density fiberglass insulation that meets UL 181 and NFPA 90A. Insulation shall be attached to the unit casing by adhesive and weld pins. Electric coils shall be supplied by the terminal unit manufacturer and shall be ETL listed in accordance with UL standards. Construct coil casing with minimum 20 gage galvanized steel. Elements shall be 80/20 Ni-Cr and supported by ceramic isolators. The integral control panel shall be housed in a NEMA 2 enclosure with hinged access door for access to all controls and safety devices. #### **ELECTRIC HEATING COILS** Electric coils shall contain a primary automatic reset thermal cutout and differential pressure airflow switch for proof of airflow. - (Optional) Electric coils shall include fused or non-fused door interlocking disconnect switch, AC solid state relay, fuse-block, manual reset cutout, and/or dust tight enclosure construction. - (Optional) LineaHeat solid state electronic proportional control of electric heat shall meet the requirements of ASHRAE Standard 62, Addenda N. - (Optional) LineaHeat solid state electronic controlled heater with control of the leaving air temperature limiting the unit discharge temperature to a set value. © KRUEGER 2012 QFV | Standard, Parallel Flow ## QFV Engineering Specification & Configuration = #### **HOT WATER COILS** Hot water coil casing shall be constructed with minimum 20 gage galvanized steel with flanged discharge for attachment to downstream duct work. Coils shall be factory installed on the terminal unit. Fins shall be rippled and corrugated heavy gage aluminum, mechanically bonded to tubes. Tubes shall be copper with minimum wall thickness of 0.016" and with male solder header connections. Coils shall be leak tested to 400 psi. Number of coil rows and circuits shall be selected to provide performance as required by the plans. Coil performance data shall be based on tests run in accordance with AHRI Standard #### 1. SERIES: (XXX) QFV - Fan Powered Terminal Unit #### 2. SENSOR TYPE: (X) - 1 Linear Averaging - 3 K4 LineaCross (Four Quadrant, Standard) #### 3. LINER TYPE: (X) 0 - 1/2" Liner 6 - 1/2" Foil Encapsulated 1 - 1" Liner 9 - 1" Foil Encapsulated F - 1/2" Cellular H - 1" Cellular #### 4. UNIT CASING CONTROLS: (XX) 0L - Left-hand Side, 22 Gage 1L - Left-hand Side, 20 Gage ### 5. UNIT SIZE: (X) 2 - Available Inlet Size: 6", 8" 3 - Available Inlet Sizes: 8", 10" 4 - Available Inlet Sizes: 10", 12" 5 - Available Inlet Sizes: 12", 14" 6 - Available Inlet Sizes: 14", 16" 7 - Available Inlet Sizes: 16" ## 6. INLET CODE: (XX) 06 - 6" 12 - 12" 08 - 8" 14 - 14" 10 - 10" 16 - 16" ## 7. MOTOR VOLTAGE: (X) - 1 120V, 1-Phase - 2 208/240V, 1-Phase - 3 277V, 1-Phase ## 8. CONTROL TYPE: (XXXX) (2XXX) - Analog (7XXX) - Digital, BACnet Compatible (6XXX) - Digital, Standalone (XXXX) - Factory Mounted, Provided by Others (1XXX) - Pneumatic ## 9. UNIT ACCESSORIES: (X) (X) (X) (X) (X) - 0 None - A Motor Toggle Disconnect * - E Dust-tight Control Enclosure - F Fan Motor Fuse - N Induction Inlet Attenuator with Filter - R Induction Inlet Filter - S Hanger Brackets - T Induction Inlet Attenuator #### 10.WATER HEAT: ## (ROWS/CONNECTION HAND) (XXX) 000 - N/A / None W11 - 1 Row/Right/No Access W12 - 2 Row/Right/No Access W21 - 1 Row/Left/No Access W22 - 2 Row/Left/No Access W31 - 1 Row/Right/Access W32 - 2 Row/Right/Access W41 - 1 Row/Left/Access W42 - 2 Row/Left/Access ## 11.ELECTRIC HEAT: (XX) #### LINEAHEAT: (XX) L1 - 120v/1-Phase 00 - None E1 - 120v/1-Phase L2 - 208v/1-Phase E2 - 208v/1-Phase L3 - 240v/1-Phase E3 - 240v/1-Phase L4 - 277v/1-Phase L6 - 208v/3-Phase/3-Wire E4 - 277v/1-Phase L9 - 480v/3-Phase/4-Wire E6 - 208v/3-Phase/3-Wire E9 - 480v/3-Phase/4-Wire ## 12.ELECTRIC HEAT STEPS: (X) - 0 None - 1 1-Stage - 2 2-Stage - 3 3-Stage #### 13.ELECTRIC HEAT COIL ACCESSORIES: (X)(X)(X)(X)(X) - 0 None - C Fuse Block - E Chicago Code Construction - F Manual Reset Cutout - G Dust-tight Construction - H Staged Solid State Relays - K Door-interlocking Fused Disconnect - L Door-interlocking Non-fused Disconnect - P Water Coil Vent & Drain - * Motor Toggle Disconnect not available with electric heat.